TY - JOUR T1 - Evaluation of thermal, chemical, and mechanical seed scarification methods for 4 Great Basin lupine species JF - Native Plants Journal JO - NATIVE PLANTS JOURNAL SP - 5 LP - 18 DO - 10.3368/npj.17.1.5 VL - 17 IS - 1 AU - Covy D Jones AU - Mikel R Stevens AU - Von D Jolley AU - Bryan G Hopkins AU - Scott L Jensen AU - Dave Turner AU - Jason M Stettler Y1 - 2016/03/20 UR - http://npj.uwpress.org/content/17/1/5.abstract N2 - Seeds of most Great Basin lupine (Lupinus spp. [Fabaceae]) species are physically dormant and thus, difficult to establish in uniform stands in seed production fields. We designed this study to examine 5 seed scarification techniques, each with 11 levels of application (including a non-scarified control), to reduce the physical seed dormancy of longspur lupine (L. arbustus Douglas ex Lindl.), silvery lupine (L. argenteus Pursh), hairy bigleaf lupine (L. prunophilus M.E. Jones), and silky lupine (L. sericeus Pursh). These 4 perennial Great Basin lupine species are of interest for both rehabilitation and restoration of degraded rangelands. We evaluated 10 treatments of each of 5 scarification methods, one mechanical, 2 thermal, and 2 chemical (sulfuric acid and sodium hypochlorite) techniques on the above-mentioned species. The sulfuric acid and the mechanical scarification treatments significantly improved germination for both silvery and silky lupine. Additionally, one thermal scarification method (60 s at 95 °C [203 °F]) was effective for silvery lupine. Both sulfuric acid and sodium hypochlorite scarification methods had treatment levels that significantly improved germination of hairy bigleaf lupine. For longspur lupine, all treatments within the 5 scarification methods either decreased or were not a significant improvement of germination as compared with the control, except for the treatment of soaking the seeds for 35 s at 95 °C (203 °F). We found scarification to be an effective tool for reducing physical dormancy in silvery lupine, hairy bigleaf lupine, and silky lupine, thus allowing for a more efficient use of limited seeds. ER -