Skip to main content

Main menu

  • Home
  • Content
    • Current
    • Archive
  • Info for
    • Authors
    • Subscribers
    • Institutions
    • Advertisers
  • About Us
    • About Us
    • Editorial Board
    • Index/Abstracts
  • Connect
    • Feedback
    • Help
  • Alerts
  • Free Issue
  • Call for Papers
  • Other Publications
    • UWP
    • Ecological Restoration
    • Land Economics
    • Landscape Journal

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Native Plants Journal
  • Other Publications
    • UWP
    • Ecological Restoration
    • Land Economics
    • Landscape Journal
  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
Native Plants Journal

Advanced Search

  • Home
  • Content
    • Current
    • Archive
  • Info for
    • Authors
    • Subscribers
    • Institutions
    • Advertisers
  • About Us
    • About Us
    • Editorial Board
    • Index/Abstracts
  • Connect
    • Feedback
    • Help
  • Alerts
  • Free Issue
  • Call for Papers
  • Follow uwp on Twitter
  • Visit uwp on Facebook
Research ArticleArticles

Scarification and high, diurnal temperatures produce optimal germination of sand dropseed (Sporobolus cryptandrus (Torr.) A. Gray)

Mary Wolf and Derek Tilley
Native Plants Journal, August 2024, 25 (1) 28-37; DOI: https://doi.org/10.3368/npj.25.1.28
Mary Wolf
USDA Natural Resources Conservation Service, Aberdeen Plant Materials Center, PO Box 296, Aberdeen, ID 83210
Roles: Agronomist
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: [email protected]
Derek Tilley
USDA Natural Resources Conservation Service, Aberdeen Plant Materials Center, PO Box 296, Aberdeen, ID 83210
Roles: PMC Manager
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: [email protected]
  • Article
  • Figures & Data
  • Info & Metrics
  • References
  • PDF
Loading

REFERENCES

  1. ↵
    1. Agneray AC,
    2. Parchman TL,
    3. Leger EA
    . 2022. Phenotypes and environment predict seedling survival for seven co-occurring Great Basin plant taxa growing with invasive grass. Ecology and Evolution 12: e8870. doi: 10.1002/ece3.8870
    OpenUrl
  2. ↵
    1. Barkworth ME,
    2. Anderton LK,
    3. Capels KM,
    4. Long S,
    5. Piep MB
    , editors. 2007. Manual of grasses for North America. Logan (UT): Intermountain Herbarium and Utah State University Press. 627 p.
  3. ↵
    1. Baskin JM,
    2. Baskin CC
    . 2001. Propagation protocol for production of Container (plug) Sporobolus cryptandrus (Torr.) Gray plants. Lexington (KY): University of Kentucky. In: Native Plant Network. URL: http://NativePlantNetwork.org (accessed 23 Dec 2022). US Department of Agriculture, Forest Service, National Center for Reforestation, Nurseries, and Genetic Resources.
  4. ↵
    1. Baskin CC,
    2. Baskin JM
    . 2014. Seeds: ecology, biogeography, and evolution of dormancy and germination. 2nd ed., volume 86, issue 6. Amsterdam, Netherlands: Elsevier Academic Press.
  5. ↵
    1. Baughman OW,
    2. Kerby JD,
    3. Boyd CS,
    4. Madsen MD,
    5. Svejcar TJ
    . 2023. Can delaying germination reduce barriers to successful emergence for early-germinating, fall-sown native bunchgrass seeds in cold deserts? Restoration Ecology 31: e13761. https://doi.org/10.111/rec13761
    OpenUrl
    1. Bower AD,
    2. St Clair JB,
    3. Erickson V
    . 2014. Generalized provisional seed zones for native plants. Ecological Applications 24(5):913–919. doi: 10.1890/13-0285.1
    OpenUrlPubMed
  6. ↵
    1. Brown HR
    . 1943. Growth and seed yields of native prairie plants in various habitats of the mixed-prairie. Transactions, Kansas Academy of Science 46:87–99.
    OpenUrl
  7. ↵
    1. Comstock JP,
    2. Ehleringer JR
    . 1992. Plant adaptation in the Great Basin and Colorado Plateau. Great Basin Naturalist 52(3):195–215.
    OpenUrlWeb of Science
  8. ↵
    1. Copeland SM,
    2. Bradford JB,
    3. Hardegree SP,
    4. Schlaepfer DR,
    5. Badik KJ
    . 2023. Management and environmental factors associated with simulated restoration seeding barriers in sagebrush steppe. Restoration Ecology 31: e13722. https://doi.org/10.111/rec.13722
    OpenUrl
  9. ↵
    1. Ferrari FN,
    2. Parera CA
    . 2015. Germination of six native perennial grasses that can be used as potential soil cover crops in drip-irrigated vineyards in semiarid environs of Argentina. Journal of Arid Environments 113:1–5.
    OpenUrl
  10. ↵
    1. Jackson CV
    . 1928. Seed germination in certain New Mexico range grasses. Botanical Gazette 86:270–294.
    OpenUrl
  11. ↵
    1. Larson J
    . 2022. Personal communication. Burns (OR): USDA ARS Eastern Oregon Agricultural Research Center-Burns. Postdoctoral Researcher.
  12. ↵
    1. Luzuriaga AL,
    2. Escudero A,
    3. Pérez-García P
    . 2005. Environmental maternal effects on seed morphology and germination in Sinapis arvensis (Cruciferae). Weed Research 46:163–174.
    OpenUrl
  13. ↵
    1. Maguire JD
    . 1962. Speed of germination – Aid in selection and evaluation for seedling emergence and vigor. Crop Science 2:176–177.
    OpenUrlCrossRef
  14. ↵
    1. Massatti R
    . 2019. Genetically-informed seed transfer zones for Pleuraphis jamesii, Sphaeralcea parvifolia, and Sporobolus cryptandrus across the Colorado Plateau and adjacent regions. US Geological Survey. 11 p.
  15. ↵
    1. Monsen SB,
    2. Stevens R,
    3. Shaw N
    . 2004. Grasses. In: Monsen SB, Stevens R, Shaw NL, compilers. Restoring western ranges and wildlands. Fort Collins (CO): USDA Forest Service, Rocky Mountain Research Station. General Technical Report RMRS-GTR-136-vol-2. p 295–424.
  16. ↵
    1. Nguyen CD,
    2. Jianjun C,
    3. Perez D,
    4. Huo H,
    5. Porceddu M
    . 2021. Effects of maternal environment on seed germination and seedling vigor of Petunia × hybrida under different abiotic stresses. Plants 10(3):581.
    OpenUrl
  17. ↵
    [NOAA] USDC National Oceanic and Atmospheric Administration. 2023. Sulfuric acid chemical datasheet. Cameo Chemicals Database of Hazardous Materials, National Oceanographic and Atmospheric Administration. URL: https://cameochemicals.noaa.gov/chemical/5193 (accessed 6 Mar 2023).
  18. ↵
    1. Ogle D,
    2. Tilley D,
    3. St John L,
    4. Stannard M,
    5. Holzworth L,
    6. Wolf M
    . 2023. Conservation plant species for the Intermountain West. Boise (ID): USDA Natural Resources Conservation Service. Idaho Plant Materials Technical Note No. 24. 75 p.
  19. ↵
    1. Omernik JM
    . 1987. Ecoregions of the conterminous United States. Annals of the Association of American Geographers 77:118–125.
    OpenUrlCrossRefGeoRefWeb of Science
  20. [PRISM] PRISM Climate Group. 2023. URL: https://prism.oregonstate.edu (data created 15 Dec 2022; accessed 15 Mar 2023). Corvallis (OR): Oregon State University.
  21. ↵
    1. Quinn JA,
    2. Ward RT
    . 1968. Ecological differences in sand dropseed (Sporobolus cryptandrus). Ecological Monographs 39(1):61–78.
    OpenUrl
  22. ↵
    1. Roundy BA,
    2. Biedenbender SH
    . 1996. Germination of warm-season grasses under constant and dynamic temperatures. Journal of Range Management 49(5):425–431.
    OpenUrl
  23. ↵
    1. Sartor CE,
    2. Marone L
    . 2010. A plurality of causal mechanisms explains the persistence or transience of soil seed banks. Journal of Arid Environments 74:303–306.
    OpenUrl
  24. ↵
    1. Smith SD,
    2. Monson RK,
    3. Anderson JE
    . 2012. Physiological ecology of North American desert plants. Berlin, Heidelberg: Springer Science and Business Media. 288 p.
  25. ↵
    1. Tilley D
    . 2014. Soaking Nebraska sedge seeds in warm, aerated water improves germination. Native Plants Journal 14(1):55–58.
    OpenUrl
  26. ↵
    1. Tilley D,
    2. Pickett T
    . 2021. Germination response of curlycup gumweed seed to oxygenated water treatment. Native Plants Journal 22(1):4–12.
    OpenUrlAbstract/FREE Full Text
  27. ↵
    1. Tilley D,
    2. St John L,
    3. Ogle D
    . 2009. Plant guide for sand dropseed (Sporobolus cryptandrus). Aberdeen (ID): USDA Natural Resources Conservation Service, Aberdeen Plant Materials Center. 4 p.
  28. ↵
    1. Toole VK
    . 1941. Factors affecting the germination of various dropseed grasses (Sporobolus spp.). Journal of Agricultural Research 62(12):691–715.
    OpenUrl
  29. ↵
    1. Torok P,
    2. Espinoza-Ami FD,
    3. Szel-Toth K,
    4. Diaz Cando P,
    5. Guallichico Suntaxi LR,
    6. McIntosh-Buday A,
    7. Habenczyus AA,
    8. Toro-Szijgyarto V,
    9. Kovacsics-Vari G,
    10. Tolgyesi C,
    11. Tothmeresz B,
    12. Sonkoly J
    . 2023. Accumulated soil seed bank of the invasive sand dropseed (Sporobolus cryptandrus) poses a challenge for its suppression. Authorea (July 22).
  30. ↵
    [USDA FS] USDA Forest Service. 1937. Range plant handbook. Washington (DC): United States Government Printing Office.
  31. ↵
    [USDA NRCS] USDA Natural Resources Conservation Service. 2023. The PLANTS database. URL: https://plants.sc.egov.usda.gov/home/plantProfile?symbol=SPCR (accessed 1 Mar 2023). Greensboro (NC): National Plant Data Team.
  32. ↵
    1. Zomlefer WB
    . 1994. Guide to flowering plant families. Chapel Hill (NC): University of North Carolina Press. 408 p.
PreviousNext
Back to top

In this issue

Native Plants Journal: 25 (1)
Native Plants Journal
Vol. 25, Issue 1
1 Aug 2024
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
  • Front Matter (PDF)
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on Native Plants Journal.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Scarification and high, diurnal temperatures produce optimal germination of sand dropseed (Sporobolus cryptandrus (Torr.) A. Gray)
(Your Name) has sent you a message from Native Plants Journal
(Your Name) thought you would like to see the Native Plants Journal web site.
Citation Tools
Scarification and high, diurnal temperatures produce optimal germination of sand dropseed (Sporobolus cryptandrus (Torr.) A. Gray)
Mary Wolf, Derek Tilley
Native Plants Journal Aug 2024, 25 (1) 28-37; DOI: 10.3368/npj.25.1.28

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Scarification and high, diurnal temperatures produce optimal germination of sand dropseed (Sporobolus cryptandrus (Torr.) A. Gray)
Mary Wolf, Derek Tilley
Native Plants Journal Aug 2024, 25 (1) 28-37; DOI: 10.3368/npj.25.1.28
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Bookmark this article

Jump to section

  • Article
    • Abstract
    • MATERIALS AND METHODS
    • RESULTS
    • DISCUSSION
    • CONCLUSION
    • Footnotes
    • REFERENCES
  • Figures & Data
  • Info & Metrics
  • References
  • PDF

Related Articles

  • No related articles found.
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • The effect of multiple fire cues on germination of groundplum milkvetch (Astragalus crassicarpus Nutt.)
  • Showy milkweed establishment by seed, rhizome, and transplants in California’s Central Valley
  • Notice of Release of Destination Germplasm of Snake River Wheatgrass
Show more Articles

Similar Articles

Keywords

  • seed treatments
  • conservation
  • native plants
  • cold stratification
  • Poaceae
UW Press logo

© 2025 The Board of Regents of the University of Wisconsin System

Powered by HighWire