Skip to main content

Main menu

  • Home
  • Content
    • Current
    • Archive
  • Info for
    • Authors
    • Subscribers
    • Institutions
    • Advertisers
  • About Us
    • About Us
    • Editorial Board
    • Index/Abstracts
  • Connect
    • Feedback
    • Help
  • Alerts
  • Free Issue
  • Call for Papers
  • Other Publications
    • UWP
    • Ecological Restoration
    • Land Economics
    • Landscape Journal

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Native Plants Journal
  • Other Publications
    • UWP
    • Ecological Restoration
    • Land Economics
    • Landscape Journal
  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
Native Plants Journal

Advanced Search

  • Home
  • Content
    • Current
    • Archive
  • Info for
    • Authors
    • Subscribers
    • Institutions
    • Advertisers
  • About Us
    • About Us
    • Editorial Board
    • Index/Abstracts
  • Connect
    • Feedback
    • Help
  • Alerts
  • Free Issue
  • Call for Papers
  • Follow uwp on Twitter
  • Visit uwp on Facebook
Research ArticleArticles

Propagation of Opuntia ×columbiana under solar panels

Steven O Link, Tyanna Van Pelt and Mason K Murphy
Native Plants Journal, August 2024, 25 (1) 15-21; DOI: https://doi.org/10.3368/npj.25.1.15
Steven O Link
Energy and Environmental Science Program, Department of Natural Resources, Confederated Tribes of the Umatilla Indian Reservation, 46411 Timine Way, Pendleton, OR 97801
Roles: Scientist 3
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: [email protected]
Tyanna Van Pelt
Energy and Environmental Science Program, Department of Natural Resources, Confederated Tribes of the Umatilla Indian Reservation, 46411 Timine Way, Pendleton, OR 97801
Roles: Oregon State University Student
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: [email protected]
Mason K Murphy
Energy and Environmental Science Program, Department of Natural Resources, Confederated Tribes of the Umatilla Indian Reservation, 46411 Timine Way, Pendleton, OR 97801
Roles: Program Manager
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: [email protected]
  • Article
  • Figures & Data
  • Info & Metrics
  • References
  • PDF
Loading

REFERENCES

  1. ↵
    1. Acevedo E,
    2. Badilla I,
    3. Nobel PS
    . 1983. Water relations, diurnal acidity changes, and productivity of a cultivated cactus, Opuntia ficus-indica. Plant Physiology 72:775–780.
    OpenUrlAbstract/FREE Full Text
  2. ↵
    1. Barron-Gafford GA,
    2. Pavao-Zuckerman MA,
    3. Minor RL,
    4. Sutter LF,
    5. Barnett-Moreno I,
    6. Blacket DT,
    7. Thompson M,
    8. Dimond K,
    9. Gerlak AK,
    10. Nabhan GT,
    11. Macknick JB
    . 2019. Agrivoltaics provide mutual benefits across the food–energy–water nexus in drylands. Nature Sustainability 2:848–855. https://doi.org/10.1038/s41893-019-0364-5
    OpenUrl
  3. ↵
    1. Beck M,
    2. Bopp G,
    3. Goetzberger A,
    4. Obergfell T,
    5. Reise C,
    6. Schindele S
    . 2012. Combining PV and food crops to Agrophotovoltaic: optimization of orientation and harvest. In: Proceedings of the 27th European Photovoltaic Solar Energy Conference and Exhibition. EU PVSEC: Frankfurt, Germany. p 24–28.
  4. ↵
    1. Bowler JE,
    2. Pierce KB Jr.,
    3. Beauchamp V,
    4. Tabshouri T
    . 2000. Translocation and grafting of adult coastal cholla (Opuntia prolifera) and coastal prickly pear (Opuntia littoralis) as mitigation for cactus wren loss in burned areas. In: Keeley JE, Baer-Keeley M, Fotheringham CJ, editors. 2nd Interface between ecology and land development in California. U.S. Geological Survey Open-File Report 00-62. p 271–274.
  5. ↵
    1. Burger JC,
    2. Louda SM
    . 1994. Indirect versus direct effects of grasses on growth of a cactus (Opuntia fragilis): insect herbivory versus competition. Oecologia 99:79–87.
    OpenUrlCrossRefWeb of Science
  6. ↵
    1. Calhoun S
    . 2012. The gardener’s guide to cactus: the 100 best paddles, barrels, columns, and globes. Portland (OR): Timber Press. 226 p.
  7. ↵
    1. Chaves MM,
    2. Pereira JS,
    3. Maroco J,
    4. Rodrigues ML,
    5. Ricardo CPP,
    6. Osório ML,
    7. Carvalho I,
    8. Faria T,
    9. Pinheiro C
    . 2002. How plants cope with water stress in the field: photosynthesis and growth. Annals of Botany 89:907–916. https://doi.org/10.1093/aob/mcf105
    OpenUrlCrossRefPubMed
  8. ↵
    1. Choi CS,
    2. Cagle AE,
    3. Macknick J,
    4. Bloom DE,
    5. Caplan JS,
    6. Ravi S
    . 2020. Effects of revegetation on soil physical and chemical properties in solar photovoltaic infrastructure. Frontiers in Environmental Science 8:1–9.
    OpenUrl
  9. ↵
    1. Chopard J,
    2. Bisson A,
    3. Lopez G,
    4. Persello S,
    5. Richert C,
    6. Fumey D
    . 2021. Development of a decision support system to evaluate crop performance under dynamic solar panels. AIP Conference Proceedings 2361, 050001. https://doi.org/10.1063/5.0055119
  10. ↵
    1. Daubenmire RF
    . 1959. A canopy-coverage method of vegetation analysis. Northwest Science 33:43–66.
    OpenUrl
  11. ↵
    1. Delgado-Sánchez P,
    2. Yáñez-Espinosa L,
    3. Jiménez-Bremont JF,
    4. Chapa-Vargas L,
    5. Flores J
    . 2013. Ecophysiological and anatomical mechanisms behind the nurse effect: which are more important? A multivariate approach for cactus seedlings. PLoS ONE 8(11):e81513. https://doi.org/10.1371/journal.pone.0081513
    OpenUrl
  12. ↵
    1. Drezner TD
    . 2017. Shade, reproductive effort and growth of the endangered native cactus, Opuntia humifusa Raf. in Point Pelee National Park, Canada. Journal of the Torrey Botanical Society 144:179–190.
    OpenUrl
  13. ↵
    1. Feugang JM,
    2. Konarski P,
    3. Zou D,
    4. Stintzing FC,
    5. Zou C
    . 2006. Nutritional and medicinal use of Cactus pear (Opuntia spp.) cladodes and fruits. Frontiers in Bioscience 11:2574–2589.
    OpenUrlCrossRefPubMedWeb of Science
  14. ↵
    1. Giblin DE,
    2. Legler BS
    , editors. 2003+. WTU Image collection web site: vascular plants, macrofungi, and lichenized fungi of Washington State. URL: http://biology.burke.washington.edu/herbarium/imagecollection.php (accessed 09 Mar 2021). Seattle (WA): University of Washington Herbarium.
  15. ↵
    1. Hudelson T,
    2. Lieth JH
    . 2021. Crop production in partial shade of solar photovoltaic panels on trackers. AIP Conference Proceedings 2361, 080001. https://doi.org/10.1063/5.0055174
  16. ↵
    1. Kaspar TC,
    2. Bland WL
    . 1992. Soil temperature and root growth. Soil Science 154:290–299.
    OpenUrlCrossRef
  17. ↵
    1. Link SO
    . 2021. Effect of patch size on establishment and productivity of Opuntia columbiana. Native Plants Journal 22:306–314.
    OpenUrlAbstract/FREE Full Text
  18. ↵
    1. Link SO,
    2. Cruz RO,
    3. Harper BL,
    4. Jones JD,
    5. Penney BL
    . 2011. Shrub-steppe species survival after outplanting on bare soils. In: Riley LE, Haase DL, Pinto JR, technical coordinators. National Proceedings: Forest and Conservation Nursery Associations—2010: USDA Forest Service, Rocky Mountain Research Station. Fort Collins, CO. Proceedings RMRS-P-65. p 159–167.
    1. Louhaichi M,
    2. Nefzaoui A,
    3. Guevara JC
    . 2017. Cactus ecosystem goods and services. In: Inglese P, Mondragon C, Nefzaoui A, Sáenz C, editors. Crop ecology, cultivation and uses of cactus pear. IX International Congress on Cactus Pear and Cochineal: ICARDA FAO, UN. p 159–170.
  19. ↵
    1. Marrou H,
    2. Guilionic L,
    3. Dufour L,
    4. Dupraz C,
    5. Wery J
    . 2013. Microclimate under agrivoltaic systems: Is crop growth rate affected in the partial shade of solar panels? Agricultural and Forest Meteorology 177:117–132.
    OpenUrl
  20. ↵
    1. Mills PF
    . 2019. On the path to energy independence and a clean power future: LED lighting retrofit and solar power generation for the CTUIR Science and Engineering Laboratory and Public Transit Center. United States. https://doi.org/10.2172/1562684; https://www.osti.gov/servlets/purl/1562684
  21. ↵
    1. Moerman DE
    . 1998. North American ethnobotany. Portland (OR): Timber Press. 927 p.
  22. ↵
    1. Nefzaoui A
    . 2018. Opuntia ficus-indica productivity and ecosystem services in arid areas. Italus Hortus 25:29–39.
    OpenUrl
  23. ↵
    1. Nobel PS
    . 2003. Environmental biology of agaves and cacti. Cambridge: Cambridge University Press. 284 p.
  24. ↵
    [NWS] National Weather Service. 2022. Pendleton, Oregon.
  25. ↵
    1. Parfitt BD
    . 1998. New nomenclatural combinations in the Opuntia polyacantha complex. Cactus and Succulent Journal 70:188.
    OpenUrl
  26. ↵
    1. Peters EM,
    2. Martorell C,
    3. Ezcurra E
    . 2008. Nurse rocks are more important than nurse plants in determining the distribution and establishment of globose cacti (Mammillaria) in the Tehuacan Valley, Mexico. Journal of Arid Environments 72:593–601.
    OpenUrlCrossRefWeb of Science
  27. ↵
    1. Quaempts EJ,
    2. Jones KL,
    3. O’Daniel SJ,
    4. Beechie TJ,
    5. Poole GC
    . 2018. Aligning environmental management with ecosystem resilience: a First Foods example from the Confederated Tribes of the Umatilla Indian Reservation, Oregon, USA. Ecology and Society 23(2). https://doi.org/10.5751/ES-10080-230229
  28. ↵
    1. Rebele F,
    2. Lehmann C
    . 2002. Restoration of a landfill site in Berlin, Germany, by spontaneous and directed succession. Restoration Ecology 10:340–347.
    OpenUrl
  29. ↵
    1. Rebman JP,
    2. Pinkava DJ
    . 2001. Opuntia cacti of North America—An overview. Florida Entomologist 84:474–483.
    OpenUrl
  30. ↵
    SAS Inc. 2022. JMP ® Version 16.2.0, 1989–2022. Cary (NC): SAS Institute Inc.
  31. ↵
    1. Smith SD,
    2. Patten DT,
    3. Monson RK
    . 1987. Effects of artificially imposed shade on a Sonoran Desert ecosystem: microclimate and vegetation. Journal of Arid Environments 13:65–82.
    OpenUrl
  32. ↵
    Soil Survey Staff. 2022. Web Soil Survey. Natural Resources Conservation Service, US Department of Agriculture.
  33. ↵
    1. Steele RBD,
    2. Torrie JH
    . 1960. Principals and procedures of statistics. New York (NY): McGraw-Hill. 481 p.
  34. ↵
    1. Thompson EP,
    2. Bombelli EL,
    3. Shubham S,
    4. Watson H,
    5. Everard A,
    6. D’Ardes V,
    7. Schievano A,
    8. Bocchi S,
    9. Zand N,
    10. Howe CJ,
    11. Bombelli P
    . 2020. Tinted semi-transparent solar panels states allow concurrent production of crops and electricity on the same cropland. Advanced Energy Materials 10:1–9. https://doi.org/10.1002/aenm.202001189
    OpenUrl
  35. ↵
    [USDA NRCS] USDA Natural Resources Conservation Service. 2022. The PLANTS database. URL: http://plants.usda.gov (accessed 10 Oct 2022). Greensboro (NC): National Plant Data Team.
  36. ↵
    1. Zimmermann HG,
    2. Granata G
    . 2002. Insect pests and diseases. In: Nobel PS, editor. Cacti biology and uses. Berkeley (CA): University of California Press. p 235–254.
PreviousNext
Back to top

In this issue

Native Plants Journal: 25 (1)
Native Plants Journal
Vol. 25, Issue 1
1 Aug 2024
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
  • Front Matter (PDF)
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on Native Plants Journal.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Propagation of Opuntia ×columbiana under solar panels
(Your Name) has sent you a message from Native Plants Journal
(Your Name) thought you would like to see the Native Plants Journal web site.
Citation Tools
Propagation of Opuntia ×columbiana under solar panels
Steven O Link, Tyanna Van Pelt, Mason K Murphy
Native Plants Journal Aug 2024, 25 (1) 15-21; DOI: 10.3368/npj.25.1.15

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Propagation of Opuntia ×columbiana under solar panels
Steven O Link, Tyanna Van Pelt, Mason K Murphy
Native Plants Journal Aug 2024, 25 (1) 15-21; DOI: 10.3368/npj.25.1.15
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Bookmark this article

Jump to section

  • Article
    • Abstract
    • MATERIALS AND METHODS
    • RESULTS
    • DISCUSSION
    • CONCLUSION
    • ACKNOWLEDGMENTS
    • Footnotes
    • REFERENCES
  • Figures & Data
  • Info & Metrics
  • References
  • PDF

Related Articles

  • No related articles found.
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • The effect of multiple fire cues on germination of groundplum milkvetch (Astragalus crassicarpus Nutt.)
  • Showy milkweed establishment by seed, rhizome, and transplants in California’s Central Valley
  • Notice of Release of Destination Germplasm of Snake River Wheatgrass
Show more Articles

Similar Articles

Keywords

  • transplanting
  • percent survival
  • pad production
  • etiolation
  • shade
  • Cactaceae
UW Press logo

© 2025 The Board of Regents of the University of Wisconsin System

Powered by HighWire