Skip to main content

Main menu

  • Home
  • Content
    • Current
    • Archive
  • Info for
    • Authors
    • Subscribers
    • Institutions
    • Advertisers
  • About Us
    • About Us
    • Editorial Board
    • Index/Abstracts
  • Connect
    • Feedback
    • Help
  • Alerts
  • Free Issue
  • Call for Papers
  • Other Publications
    • UWP
    • Ecological Restoration
    • Land Economics
    • Landscape Journal

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Native Plants Journal
  • Other Publications
    • UWP
    • Ecological Restoration
    • Land Economics
    • Landscape Journal
  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
Native Plants Journal

Advanced Search

  • Home
  • Content
    • Current
    • Archive
  • Info for
    • Authors
    • Subscribers
    • Institutions
    • Advertisers
  • About Us
    • About Us
    • Editorial Board
    • Index/Abstracts
  • Connect
    • Feedback
    • Help
  • Alerts
  • Free Issue
  • Call for Papers
  • Follow uwp on Twitter
  • Visit uwp on Facebook
Research ArticleRefereed Research

Thermotolerance in seeds of a new oilseed crop Physaria fendleri (A. Gray) O’Kane & Al-Shehbaz and related species

Von Mark V Cruz, Jenna Marie Schnibbe and David A Dierig
Native Plants Journal, March 2021, 22 (1) 66-74; DOI: https://doi.org/10.3368/npj.22.1.66
Von Mark V Cruz
(Plant Breeding and Genetics) Bridgestone Americas Inc Agro-Operations Guayule Research Farm Eloy, AZ 85131-9532
Roles: Research Scientist
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: [email protected]
Jenna Marie Schnibbe
Formerly at Colorado State University College of Agricultural Sciences Fort Collins, CO 80523-5204
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
David A Dierig
Bridgestone Americas Inc Agro-Operations Guayule Research Farm Eloy, AZ 85131-9532
Roles: Department Manager
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: [email protected]
  • Article
  • Figures & Data
  • Info & Metrics
  • References
  • PDF
Loading

REFERENCES

  1. ↵
    1. Allard RW
    . 1954. New heat tolerant lima bean: plant breeding program developed new variety of standard lima bean suitable for interior valleys. California Agriculture (March). p 5.
  2. ↵
    1. Al-Shehbaz IA
    . 2010. Brassicaceae. In: Flora of North America Editorial Committee, editors. Flora of North America north of Mexico, volume 7. 15+ vols, 1993–. New York and Oxford: Flora of North America Association.
  3. ↵
    1. Al-Shehbaz IA,
    2. O’Kane SL Jr.
    . 2002. Lesquerella is united with Physaria (Brassicaceae). Novon 12:319–329.
    OpenUrlCrossRefWeb of Science
  4. ↵
    1. Argyris J,
    2. Dahal P,
    3. Truco MJ,
    4. Ochoa O,
    5. Still EW,
    6. Michelmore RW,
    7. Bradford KJ
    . 2008. Genetic analysis of lettuce seed thermoinhibition. Proceedings, IVth International Symposium on Seed, Transplant, and Stand Establishment of Horticultural Crops. Acta Horticulturae 782:23–34.
    OpenUrl
  5. ↵
    1. [AZMET] The Arizona Meteorological Network
    . 2020. URL: http://ag.arizona.edu/azmet/index.html (accessed 21 Jan 2020). Tucson (AZ): The University of Arizona.
  6. ↵
    1. Baskin CC,
    2. Baskin JM
    . 1998. Seeds: ecology, biogeography, and evolution of dormancy and germination. San Diego (CA): Academic Press. 667 p.
  7. ↵
    1. Bass LN,
    2. Clark DC
    . 1973. Persistence of the dormancy-breaking effect of gibberellic acid on Lesquerella spp. Proceedings of the Association of Official Seed Analysts 63:102–105.
    OpenUrl
  8. ↵
    1. Bass LN,
    2. Clark DC,
    3. Sayers RL
    . 1966. Germination experiments with seed of Lesquerella spp. Proceedings of the Association of Official Seed Analysts 56:148–153.
    OpenUrl
  9. ↵
    1. Benech-Arnold RL,
    2. Sanchez RA,
    3. Forcella F,
    4. Kruk BC,
    5. Ghersa CM
    . 2000. Environmental control of dormancy in weed seed banks in soil. Field Crops Research 67:105–122.
    OpenUrl
  10. ↵
    1. Bennett RS,
    2. Colyer PD
    . 2007. Dry heat treatment of Fusarium-infected cotton seed. Phytopathology 97:S10.
    OpenUrl
  11. ↵
    1. Copeland LO,
    2. McDonald MB
    . 2001. Principles of seed science and technology. 4th ed. Norwell (MA): Kluwer Academic Publishers. 467 p.
  12. ↵
    1. Cruz VMV,
    2. Romano G,
    3. Dierig DA
    . 2012. Effects of after-ripening and storage regimens on seed germination behavior of seven species of Physaria germplasm. Industrial Crops and Products 35:185–191.
    OpenUrl
  13. ↵
    1. Dahlquist RM,
    2. Prather TS,
    3. Stapleton JJ
    . 2007. Time and temperature requirements for weed seed thermal death. Weed Science 55:619–625.
    OpenUrl
  14. ↵
    1. Daws MI,
    2. Kabadajic A,
    3. Manger K,
    4. Kranner I
    . 2007. Extreme thermotolerance in seeds of desert-succulents is related to maximum annual temperature. South African Journal of Botany 73:262–265.
    OpenUrl
  15. ↵
    1. Dierig DA,
    2. Crafts-Brander SJ
    . 2011. The relationship of temperature to plant morphology of Lesquerella. Crop Science 51:2165–2173.
    OpenUrlCrossRef
  16. ↵
    1. Dierig DA,
    2. Thompson AE,
    3. Nakayama FS
    . 1992. Lesquerella commercialization efforts in the United States. Industrial Crops and Products 1:289–293.
    OpenUrl
  17. ↵
    1. Dierig DA,
    2. Thompson AE,
    3. Rebman JP,
    4. Kleiman R,
    5. Phillips BS
    . 1996. Collection and evaluation of new Lesquerella and Physaria germplasm. Industrial Crops and Products 5:53–63.
    OpenUrl
  18. ↵
    1. Dierig DA,
    2. Thompson AE,
    3. Coffelt TA
    . 1998. Registration of three Lesquerella fendleri germplasm lines selected for improved oil traits. Crop Science 38:287.
    OpenUrl
  19. ↵
    1. Dierig DA,
    2. Shannon MC,
    3. Grieve CM
    . 2001a. Registration of WCL-SL1 salt tolerant Lesquerella fendleri germplasm. Crop Science 41:604–605.
    OpenUrl
  20. ↵
    1. Dierig DA,
    2. Tomasi PM,
    3. Dahlquist GH
    . 2001b. Registration of WCL-LY2 high oil Lesquerella fendleri germplasm. Crop Science 41:604.
    OpenUrl
  21. ↵
    1. Dierig DA,
    2. Adam NR,
    3. Mackey BE,
    4. Dahlquist GH,
    5. Coffelt TA
    . 2006a. Temperature and elevation effects on plant growth, development, and seed production of two Lesquerella species. Industrial Crops and Products 24:17–25.
    OpenUrl
  22. ↵
    1. Dierig DA,
    2. Dahlquist GH,
    3. Tomasi PM
    . 2006b. Registration of WCL-LO3 high oil Lesquerella fendleri germplasm. Crop Science 46:1832–1833.
    OpenUrlCrossRef
  23. ↵
    1. Egley GH
    . 1990. High-temperature effects on germination and survival of weed seeds in soil. Weed Science 38:429–435.
    OpenUrl
  24. ↵
    1. Farooq M,
    2. Basra SMA,
    3. Hafeez K,
    4. Warriach EA
    . 2004. Influence of high- and low-temperature treatments on seed germination and seedling vigor of coarse and fine rice. International Rice Research Newsletter 29:75–77.
    OpenUrl
  25. ↵
    1. Fitch EA,
    2. Walck JL,
    3. Hidayati SN
    . 2007. Germinating seeds of Lesquerella perforata and stonensis: substrate effects and mucilage production. Native Plants Journal 8:4–10.
    OpenUrlAbstract/FREE Full Text
  26. ↵
    1. Gashaw M,
    2. Michelsen A
    . 2002. Influence of heat shock on seed germination of plants from regularly burnt savanna woodlands and grasslands in Ethiopia. Plant Ecology 159:83–93.
    OpenUrlCrossRefWeb of Science
  27. ↵
    1. Hanson J
    . 1985. Procedures for handling seeds in genebanks. Practical Manuals for Genebanks: No. 1. Rome, Italy: International Board for Plant Genetic Resources.
  28. ↵
    1. Hopkins CY
    . 1936. Thermal death point of certain weed seeds. Canadian Journal of Research 14c:178–183.
    OpenUrl
  29. ↵
    [ISTA] International Seed Testing Association. 2005. >International rules for seed testing. Bassersdorf, Switzerland: International Seed Testing Association.
  30. JMP software. 1989-2019. Version 13. Cary (NC): SAS Institute.
  31. ↵
    1. Joosen RVL,
    2. Kodde J,
    3. Willems LAJ,
    4. Ligterink W,
    5. Van Der Plas LHW,
    6. Hilhorst HW
    . 2010. Germinator: a software package for high-throughput scoring and curve fitting of Arabidopsis seed germination. Plant Journal 62:148–159.
    OpenUrlCrossRefPubMedWeb of Science
  32. ↵
    1. Kemble J,
    2. Musgrove MB
    . 2006. Soil temperature conditions for vegetable seed germination. Alabama Cooperative Extension System, Alabama A&M and Auburn Universities. Pub. ANR-1061.
  33. ↵
    1. McPartland JM,
    2. Clarke RC,
    3. Watson DP
    . 2000. Hemp diseases and pests: management and biological control: an advanced treatise. Oxon, UK: Centre for Agriculture and Bioscience International (CABI). p 175–177.
  34. ↵
    1. Pérez-García F,
    2. Gonzalez-Benito ME,
    3. Gómez-Campo C
    . 2007. High viability recorded in ultra-dry seeds of 37 species of Brassicaceae after almost 40 years of storage. Seed Science and Technology 35:143–153.
    OpenUrl
  35. ↵
    1. Plant List, The
    . 2013. Version 1.1. Online database. URL: http://www.theplantlist.org/ (accessed 23 Feb 2020). Collaboration between the Royal Botanic Gardens, Kew, Missouri Botanical Garden, and others.
  36. ↵
    1. Puppala N,
    2. Fowler JL
    . 2002. Lesquerella seed pretreatment to improve germination. Industrial Crops and Products 17:61–69.
    OpenUrl
  37. ↵
    1. Rodríguez García R,
    2. de Rodríguez DJ,
    3. Angula-Sánchez JL,
    4. Dierig DA,
    5. Diaz Solís H,
    6. dela Rosa-Loera A
    . 2007. Lesquerella fendleri response to different sowing dates in northern Mexico. Industrial Crops and Products 25:117–122.
    OpenUrl
  38. ↵
    1. Rollins RC,
    2. Shaw EA
    . 1973. The genus Lesquerella (Cruciferae) in North America. Cambridge (MA): Harvard University Press. 288 p.
  39. ↵
    1. Sharir A,
    2. Gelmond H
    . 1971. Germination studies of Lesquerella fendleri and L. gordonii, with reference to their cultivation. Economic Botany 25:55–59.
    OpenUrl
  40. ↵
    1. Sikder S,
    2. Paul NK
    . 2010. Study of influence of temperature regimes on germination characteristics and seed reserves mobilization in wheat. African Journal of Plant Science 4:401–408.
    OpenUrl
  41. ↵
    1. Stapleton JJ,
    2. Prather TS,
    3. Mallek SB,
    4. Ruiz TS,
    5. Elmore CL
    . 2002. High temperature solarization for production of weed-free container soils and potting mixes. HortTechnology 12:697–700.
    OpenUrl
  42. ↵
    1. Texas Mesonet
    . 2020. Texas Mesonet. URL: https://mesowest.utah.edu/cgi-bin/droman/meso_base_dyn.cgi?stn=F0891 (accessed 20 Feb 2020). Department of Atmospheric Sciences, Texas A&M University.
  43. ↵
    1. USDA ARS GRIN
    . 2020. Germplasm resources information network. URL: http://www.ars-grin.gov/ (accessed 13 Dec 2019). Beltsville (MD): USDA Agricultural Research Service.
  44. ↵
    1. Windauer LB,
    2. Slafer GA,
    3. Ravetta DA
    . 2004. Phenological response of an annual and a perennial Lesquerella species. Annals of Botany 94:139–144.
    OpenUrlCrossRefPubMed
  45. ↵
    1. Windauer L,
    2. Altuna A,
    3. Benech-Arnold R
    . 2007. Hydrotime analysis of Lesquerella fendleri seed germination responses to priming treatments. Industrial Crops and Products 25:70–74.
    OpenUrlCrossRefWeb of Science
  46. ↵
    1. Yoong FY,
    2. O’Brien LK,
    3. Truco MJ,
    4. Huo H,
    5. Sideman R,
    6. Hayes R,
    7. Michelmore RW,
    8. Bradford KJ
    . 2016. Genetic variation for thermotolerance in lettuce seed germination is associated with temperature-sensitive regulation of Ethylene Response Factor 1 (ERF1). Plant Physiology 170:472–488.
    OpenUrlAbstract/FREE Full Text
  47. ↵
    1. Zuloaga-Aguilar S,
    2. Briones O,
    3. Orozco-Segovia A
    . 2011. Seed germination of montane forest species in response to ash, smoke and heat shock in Mexico. Acta Oecologica 37:256–262.
    OpenUrl
PreviousNext
Back to top

In this issue

Native Plants Journal: 22 (1)
Native Plants Journal
Vol. 22, Issue 1
20 Mar 2021
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
  • Front Matter (PDF)
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on Native Plants Journal.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Thermotolerance in seeds of a new oilseed crop Physaria fendleri (A. Gray) O’Kane & Al-Shehbaz and related species
(Your Name) has sent you a message from Native Plants Journal
(Your Name) thought you would like to see the Native Plants Journal web site.
Citation Tools
Thermotolerance in seeds of a new oilseed crop Physaria fendleri (A. Gray) O’Kane & Al-Shehbaz and related species
Von Mark V Cruz, Jenna Marie Schnibbe, David A Dierig
Native Plants Journal Mar 2021, 22 (1) 66-74; DOI: 10.3368/npj.22.1.66

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Thermotolerance in seeds of a new oilseed crop Physaria fendleri (A. Gray) O’Kane & Al-Shehbaz and related species
Von Mark V Cruz, Jenna Marie Schnibbe, David A Dierig
Native Plants Journal Mar 2021, 22 (1) 66-74; DOI: 10.3368/npj.22.1.66
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Bookmark this article

Jump to section

  • Article
    • Abstract
    • MATERIALS AND METHODS
    • RESULTS AND DISCUSSION
    • Footnotes
    • REFERENCES
  • Figures & Data
  • Info & Metrics
  • References
  • PDF

Related Articles

  • No related articles found.
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Investigating seed dormancy and germination of important Wyoming forbs
  • Performance of 3 Florida native grasses grown in varying container substrates
  • Optimizing regeneration protocols for native Seeds of Success–collected milkvetch (Astragalus spp.) genetic resources
Show more Refereed Research

Similar Articles

Keywords

  • arid zone species
  • dormancy
  • thermotolerance
  • new crops
  • bladderpod
  • Brassicaceae
  • The Plant List (2013)
UW Press logo

© 2025 The Board of Regents of the University of Wisconsin System

Powered by HighWire